RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Breakthrough
Neurosciences Channel

subscribe to Neurosciences newsletter
Latest Research : Neurosciences

   EMAIL   |   PRINT
Artificial synapses created between nanoelectronic devices and mammalian neurons

Aug 25, 2006 - 7:26:00 PM , Reviewed by: Priya Saxena
"This work could have a revolutionary impact on science and technology,"

 
[RxPG] Opening a whole new interface between nanotechnology and neuroscience, scientists at Harvard University have used slender silicon nanowires to detect, stimulate, and inhibit nerve signals along the axons and dendrites of live mammalian neurons.

"We describe the first artificial synapses between nanoelectronic devices and individual mammalian neurons, and also the first linking of a solid-state device -- a nanowire transistor -- to the neuronal projections that interconnect and carry information in the brain," says Lieber, the Mark Hyman, Jr., Professor of Chemistry in Harvard's Faculty of Arts and Sciences and Division of Engineering and Applied Sciences. "These extremely local devices can detect, stimulate, and inhibit propagation of neuronal signals with a spa-tial resolution unmatched by existing techniques."

Electrophysiological measurements of brain activity play an important role in understanding signal propagation through individual neurons and neuronal networks, but existing technologies are relatively crude: Micropipette electrodes poked into cells are invasive and harmful, and microfabricated electrode arrays are too bulky to detect activity at the level of individual axons and dendrites, the neuronal projections responsible for electrical signal propagation and inter-neuron communication.

By contrast, the tiny nanowire transistors developed by Lieber and colleagues gently touch a neuronal projection to form a hybrid synapse, making them noninvasive, and are thousands of times smaller than the electronics now used to measure brain activity.

Lieber's group has previously shown that nanowires can detect, with great precision, molecular markers indicating the presence of cancer in the body, as well as single viruses. Their latest work takes advantage of the size similarities between ultra-fine silicon nanowires and the axons and dendrites projecting from nerve cells: Nanowires, like neuronal offshoots, are just tens of nanometers in width, making the thin filaments a good match for intercepting nerve signals.

Because the nanowires are so slight -- their contact with a neuron is no more than 20 millionths of a meter in length -- Lieber and colleagues were able to measure and manipulate electrical conductance at as many as 50 locations along a single axon.

The current work involves measurement of signals only within single mammalian neurons; the researchers are now working toward monitoring signaling among larger networks of nerve cells. Lieber says the devices could also eventually be configured to measure or detect neurotransmitters, the chemicals that leap synapses to carry electrical impulses from one neuron to another.

"This work could have a revolutionary impact on science and technology," Lieber says. "It provides a powerful new approach for neuroscience to study and manipulate signal propagation in neuronal networks at a level unmatched by other techniques; it provides a new paradigm for building sophisticated interfaces between the brain and external neural prosthetics; it represents a new, powerful, and flexible approach for real-time cellular assays useful for drug discovery and other applications; and it opens the possibility for hybrid circuits that couple the strengths of digital nanoelectronic and biological computing components."



Publication: Harvard chemist Charles M. Lieber and colleagues report on this marriage of nanowires and neurons this week in the journal Science.
On the web: www.harvard.edu 

Advertise in this space for $10 per month. Contact us today.


Related Neurosciences News
A new tool for brain research
Eve Marder to receive the $500,000 Gruber Neuroscience Prize
Research teams find genetic variant that could improve warfarin dosing in African-Americans
Diagnostic coronary angiography: Functional flow reserve changes decisions in 25 percent of cases
Study identifies a genetic risk factor for persistent pain
New BRAIN initiative announced at White House
Nurses can play key role in reducing deaths from world's most common diseases
UH Case Medical Center awarded highest certification as Comprehensive Stroke Center
NIH funds research to identify Parkinson's biomarkers
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

Subscribe to Neurosciences Newsletter

Enter your email address:


 Additional information about the news article
Lieber's co-authors on the Science paper are Fernando Patolsky, Brian P. Timko, Guihua Yu, Ying Fang, Andrew B. Greytak, and Gengfeng Zheng, all of Harvard's Department of Chemistry and Chemical Biology. Their work was supported by the Defense Advanced Research Projects Agency and Applied Biosystems.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)