RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Neurosciences Channel

subscribe to Neurosciences newsletter
Latest Research : Neurosciences

   EMAIL   |   PRINT
Brake-through discovery in nerve regeneration

Feb 3, 2005 - 12:20:00 AM
"Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axon regeneration," wrote Mi and colleagues. "The implication that more than one TNF receptor member may be involved in myelin inhibition adds a new level of complexity to designing therapeutic strategies for treating CNS injury."

 
[RxPG] Among the principal obstacles to regenerating spinal cord and brain cells after injury is the "braking" machinery in neurons that prevents regeneration. While peripheral nerves have no such machinery and can readily regenerate, central nervous system (CNS) neurons have their brakes firmly in place and locked. Now, two groups of scientists have independently found a new component of that braking machinery, adding to understanding of the regulation of neuronal regeneration and of possible treatments to switch off the brakes on regrowth of spinal cord or brain tissue.

The two groups--one group led by Jong Bae Park, Glenn Yiu, and colleagues from Children's Hospital Boston and the other led by Sha Mi and colleagues of Biogen Idec, Inc.--discovered that a protein variously called TAJ or TROY acts as an important part of the receptor on neurons that responds to growth-inhibitory molecules in myelin. Specifically, these molecules prevent the growth of the cablelike axons of injured neurons. Myelin is the fatty sheath that encases neurons and acts as an insulator and aid to the transmission of nerve impulses.

Researchers knew that CNS neurons had receptors on their surface that accepted the inhibitory molecules--like a key fitting a lock--and switched-on inhibitory signaling within the neuron. They had also shown that a protein called p75 could function as a component of the complex of proteins that make up this receptor. The puzzle, however, was that p75 is not widely made in the adult neurons in which this inhibitory receptor complex is known to function.

The two research groups turned their attention to TAJ/TROY because it is a member of the same family of receptor proteins--called TNF receptors--as p75. Their experiments revealed that TAJ/TROY is produced throughout the adult brains of mice. Also, they found that TAJ/TROY readily fits into the inhibitory receptor complex and that the resulting receptor complex switches-on the inhibitory machinery within neurons. Also, they found that treating neurons with a nonfunctional version of TAJ/TROY abolished neurons' response to the "braking" molecules produced by myelin and encouraged neuron growth.

"Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axon regeneration," wrote Mi and colleagues.

Wrote Park and colleagues, "The implication that more than one TNF receptor member may be involved in myelin inhibition adds a new level of complexity to designing therapeutic strategies for treating CNS injury." They cited studies showing that TNF receptors are expressed in many types of cells in the CNS and are intimately involved in inflammatory responses that also play a role--perhaps harmful, perhaps beneficial to regeneration or recovery--in regulating response to injury. "Further characterization of the underlying mechanisms of these findings and their relation to myelin inhibition may provide important insights into designing therapeutic strategies to block myelin inhibition and cell death in the context of CNS injury," they wrote.



Publication: Publishing in Neuron, Volume 45, Number 3, February 3, 2005, pages 345–351 (Park et al.) and 353–359 (Shao et al.)
On the web: http://www.neuron.org/ 

Advertise in this space for $10 per month. Contact us today.


Related Neurosciences News
A new tool for brain research
Eve Marder to receive the $500,000 Gruber Neuroscience Prize
Research teams find genetic variant that could improve warfarin dosing in African-Americans
Diagnostic coronary angiography: Functional flow reserve changes decisions in 25 percent of cases
Study identifies a genetic risk factor for persistent pain
New BRAIN initiative announced at White House
Nurses can play key role in reducing deaths from world's most common diseases
UH Case Medical Center awarded highest certification as Comprehensive Stroke Center
NIH funds research to identify Parkinson's biomarkers
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

Subscribe to Neurosciences Newsletter

Enter your email address:


 Additional information about the news article
Jong Bae Park, Glenn Yiu, Shinjiro Kaneko, Jing Wang, Jufang Chang, and Zhigang He: "A TNF Receptor Family Member, TROY, Is a Coreceptor with Nogo Receptor in Mediating the Inhibitory Activity of Myelin Inhibitors"

Zhaohui Shao, Jeffrey L. Browning, Xinhua Lee, Martin L. Scott, Sveltlana Shulga-Morskaya, Norm Allaire, Greg Thill, Melissa Levesque, Dinah Sah, John M. McCoy, Beth Murray, Vincent Jung, R. Blake Pepinsky, and Sha Mi: "TAJ/TROY, an Orphan TNF Receptor Family Member, Binds Nogo-66 Receptor 1 and Regulates Axonal Regeneration"

Park et al.: The other members of the research team include Jong Bae Park, Glenn Yiu, Shinjiro Kaneko, Jing Wang, Jufang Chang, and Zhigang He of Children's Hospital and Harvard Medical School. This study was supported by grants from the John Merck Fund and NIH. Shao et al.: The other members of the research team include Zhaohui Shao, Jeffrey L. Browning, Xinhua Lee, Martin L. Scott, Sveltlana Shulga-Morskaya, Norm Allaire, Greg Thill, Melissa Levesque, Dinah Sah, John M. McCoy, Beth Murray, Vincent Jung, R. Blake Pepinsky, and Sha Mi of Biogen Idec, Inc.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)