RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Neurosciences Channel

subscribe to Neurosciences newsletter
Latest Research : Neurosciences

   EMAIL   |   PRINT
Chemical trigger of morphine withdrawl found

Feb 3, 2005 - 12:17:00 AM

 
[RxPG] Researchers have discovered an important chemical in the brain's neuronal machinery that triggers some of the withdrawal symptoms of opioid drugs like morphine and heroin. They believe that drugs to inhibit the chemical--called a transporter--could relieve some of the early physical symptoms of withdrawal, such as teeth-chattering, uncontrolled shaking, and jumpiness. Such drugs could become part of the arsenal of medicines and behavioral techniques aimed at helping addicts kick their habits.

To zero in on the machinery underlying withdrawal symptoms, researchers led by Elena Bagley and Macdonald Christie of the Pain Management Research Institute at Royal North Shore Hospital (a division of the University of Sydney) performed biochemical studies on brain slices from mice that had been treated with morphine. Their objective was to understand what happens to a particular region of the midbrain--called the periaqueductal gray (PAG)--known to be involved in such withdrawal symptoms. Opiate addiction inhibits neuron activity in this region, which alters the neuronal machinery to compensate for this inhibition. Upon opiate withdrawal, the neurons rebound, becoming hyperactive.

The scientists' analysis revealed that a transporter molecule for the neurotransmitter GABA was responsible for the electrical abnormalities that produce a hyperexcitability in the neurons. Neurotransmitters are the molecular ammunition that one neuron fires at its neighbor to trigger a nerve impulse in the neighbor. Propagation of such nerve impulses through the networks of neurons in the brain is the basis of all neural activity. Transporter molecules are the proteins that retrieve neurotransmitter molecules from the spaces between neurons after they trigger nerve impulse, to reload the neuron for its next signaling burst.

Bagley and her colleagues also discovered that a molecular switch called protein kinase A was part of the triggering machinery involved in activating the abnormal GABA transporter activity.

Importantly, the researchers found that drugs that inhibit either the GABA transporter activity or protein kinase A eliminate the hyperexcitability of the PAG neurons in the mouse brain slices.

The researchers cited other studies showing that treatment with opioids also altered levels of the transporter for the neurotransmitter glutamate, "suggesting that neurotransmitter transporters may prove to be useful targets for management of opioid dependence," they wrote. The researchers also wrote that, since GABA is a neurotransmitter that inhibits nerve impulses, drugs to inhibit the GABA transporter "could produce their therapeutic effect through altering extracellular GABA concentrations as well as directly altering the excitability of GABAergic neurons."



Publication: Publishing in Neuron, Volume 45, Number 3, February 3, 2005, pages 433–445.
On the web: http://www.neuron.org/ 

Advertise in this space for $10 per month. Contact us today.


Related Neurosciences News
A new tool for brain research
Eve Marder to receive the $500,000 Gruber Neuroscience Prize
Research teams find genetic variant that could improve warfarin dosing in African-Americans
Diagnostic coronary angiography: Functional flow reserve changes decisions in 25 percent of cases
Study identifies a genetic risk factor for persistent pain
New BRAIN initiative announced at White House
Nurses can play key role in reducing deaths from world's most common diseases
UH Case Medical Center awarded highest certification as Comprehensive Stroke Center
NIH funds research to identify Parkinson's biomarkers
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

Subscribe to Neurosciences Newsletter

Enter your email address:


 Additional information about the news article
Elena E. Bagley, Michelle B. Gerke, Christopher W. Vaughan, Stephen P. Hack, and MacDonald J. Christie: "GABA Transporter Currents Activated by Protein Kinase A Excite Midbrain Neurons during Opioid Withdrawal"

The other members of the research team include Michelle B. Gerke, Christopher W. Vaughan, Stephen P. Hack of the Pain Management Research Institute at Royal North Shore Hospital, a division of the University of Sydney. This work was supported by National Institute on Drug Abuse, National Health and Medical Research Council of Australia; C.J. Martin Fellowship and project grants.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)