RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Neurosciences Channel

subscribe to Neurosciences newsletter
Latest Research : Neurosciences

   EMAIL   |   PRINT
Inhibitory neurons not just brakes they can also be used to steer

Oct 23, 2005 - 6:28:00 PM
"We know already that schizophrenia is a problem with organization of inhibitory circuits of neurons, and now we are uncovering how these specialized nerve cells work together and with other neurons. By understanding the brain in finer and finer resolution, we can then trace what happens when these neural circuits are mis-wired"

 
[RxPG] Delving ever deeper into the intricate architecture of the brain, researchers at The Salk Institute have now described how two different types of nerve cells, called neurons, work together in tiny sub-networks to pass on just the right amount and the right kind of sensory information.

Their study, published online by Nature Neuroscience, depicts how specific types of inhibitory neurons in the visual cortex of a rat brain are wired to, and "talk" with, discrete excitatory neurons. They also show how that "conversation," aimed at keeping the right balance of chemical signals, often excludes surrounding neurons.

"The inhibitory neurons are not just brakes, they can also be used to steer." said co-author Ed Callaway, Ph.D., associate professor in Salk's Systems Neurobiology Laboratories. This new study is filling in the picture of how the brain is organized into "smart" efficient networks, and researchers hope that details of this complex design might, one day, uncover the roots of such neurological diseases as schizophrenia.

"We know already that schizophrenia is a problem with organization of inhibitory circuits of neurons, and now we are uncovering how these specialized nerve cells work together and with other neurons," Callaway explained.

"By understanding the brain in finer and finer resolution, we can then trace what happens when these neural circuits are mis-wired," he added.

The Nature Neuroscience report is the latest published study in a series by Callaway and first author Yumiko Yoshimura, of both Salk and Japan's Nagoya University, that reveal how neurons in the brain's cortex are finely wired to pass on thought and perception.

The cortex is separated into large areas of specialized function, such as the motor and visual cortex, but is also organized on a finer scale into vertical "functional columns" within the .05-inch thickness of the cortex.

Research in the 1960s showed that these columns contain brain cells with similar functions, suggesting that "like-minded" neurons needed to be networked together to perform a function. To account for the tasks carried out in the larger areas, scientists assumed that the function of these columns varied smoothly across the cortex surface. Later research demonstrated that each of the six layers in the cortex is also wired into distinct circuits.

But Callaway and Yoshimura tested the prevailing notion of columnar function by devising an experimental method that used glass microelectrodes to "listen" to two neurons at a time. They used rats, whose brain organization mirrors that of a human, and dissected tiny vertical slices to preserve the circuitry. With fine glass pipettes, they recorded tiny impulses in individual live neurons and listened to their responses when other neurons were optically stimulated. If impulses occurred at precisely the same times in both neurons, this indicated that they both shared the same inputs.

The Salk scientists found that the thousands of neighboring neurons that make up these columns are not the same, and they often don't communicate directly with each other. In February, they reported in Nature how excitatory neurons were organized into sub-networks that were found within the same column but which had nothing to do with other cells nearby.

That meant that the brain's circuitry is organized on a much finer scale than was previously suspected. And this makes sense, explained Callaway, because neuroscientists were puzzled as to why so many neurons were needed in the same part of the brain to carry out the same function.

"But if you realize that the brain has ten times as many subsets of neurons, it is doing ten times as much computation, and is that much smarter," he noted.

In this study, Callaway and Yoshimura sought to look at the networks that pair together excitatory and inhibitory neurons. These neurons work directly with each other to shape responses to stimuli. "This means that inhibitory circuits can also precisely influence the activity of selected sub networks."

Callaway says the study demonstrates that neuroscientists "are really getting down to real nuts and bolts of cell type specificity, meaning that different types of neurons have different function, just like different blood cells perform different roles," he said.



Publication: Nature Neuroscience
On the web: Salk Institute 

Advertise in this space for $10 per month. Contact us today.


Related Neurosciences News
A new tool for brain research
Eve Marder to receive the $500,000 Gruber Neuroscience Prize
Research teams find genetic variant that could improve warfarin dosing in African-Americans
Diagnostic coronary angiography: Functional flow reserve changes decisions in 25 percent of cases
Study identifies a genetic risk factor for persistent pain
New BRAIN initiative announced at White House
Nurses can play key role in reducing deaths from world's most common diseases
UH Case Medical Center awarded highest certification as Comprehensive Stroke Center
NIH funds research to identify Parkinson's biomarkers
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

Subscribe to Neurosciences Newsletter

Enter your email address:


 Additional information about the news article
The Salk Institute for Biological Studies was founded in 1960 by Jonas Salk, just five years after his polio vaccine was proven safe and effective. The institute's 58 faculty scientists conduct basic research in the neurosciences, molecular biology and genetics, and plant biology. For more information: www.salk.edu.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)