RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Neurosciences Channel

subscribe to Neurosciences newsletter
Latest Research : Neurosciences

   EMAIL   |   PRINT
Life and death in the Hippocampus

Aug 14, 2006 - 1:16:00 PM , Reviewed by: Himanshu Tyagi
"When we removed the NMDA receptor, that is when cells make connections in response to glutamate in the environment, the newborn neurons withered and died at a specific stage of their maturation. The NMDA receptor modulates synapse formation and determines what pattern of input activity new neurons receive, which in turn determines survival or death."

 
[RxPG] Whether newborn nerve cells in adult brains live or die depends on whether they can muscle their way into networks occupied by mature neurons. Neuroscientists at the Salk Institute for Biological Studies pin-pointed the molecular survival gear required for a young neuron to successfully jump into the fray and hook up with other cells.

In a study published in a forthcoming issue of Nature, researchers in the lab of Fred H. Gage, Ph.D., a professor in the Gene Expression Laboratory and the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases, identify a subunit of the NMDA receptor, a protein complex that transduces signals sent by neighboring cells, as the cells' life-saving equipment that allows them to integrate into the existing brain circuitry.

The NMDA receptor is activated by the neurotransmitter glutamate, a chemical released by neurons in order to transmit information to neighboring cells. Whenever the receptor picks up a glutamate signal it is stimulated and relays the signal. But for newborn neurons that signal means something else entirely -- survival.

"When we removed the NMDA receptor, that is when cells make connections in response to glutamate in the environment, the newborn neurons withered and died at a specific stage of their maturation," explains Gage. " The NMDA receptor modulates synapse formation and determines what pattern of input activity new neurons receive, which in turn determines survival or death."

Combining mouse genetics and gene transfer techniques, Gage and a team headed by former postdoctoral fellow Ayumu Tashiro, Ph.D., injected a virus carrying a pair of molecular shears capable of deleting a gene encoding part of the NMDA receptor into the hippocampus, a brain region harboring neural stem cells that give rise to new neurons. Newly born neurons infected with virus were marked by a fluorescent dye enabling detection of neurons derived from those cells.
Life and death in the Hippocampus

A few weeks later, animals that received the virus showed fewer fluorescent neurons compared to mice injected with a benign virus lacking the shears, meaning fewer new neurons had survived originating from neural stem cells in which the NMDA receptor had been eliminated.

Listening to Gage, one gets the impression that the hippocampus is a dangerous place for a fledgling neuron trying to elbow its way into pre-existing networks. "It's rough in there!" he concedes. "The NMDA receptor-mediated event is a competition between mature cells vying for connectivity and young guys competing with both the mature cells and their peers to fit in. You are selecting for the cell that performs best in this environment."

The Gage lab previously showed that the rate at which new neurons emerge from stem cells depends on an animal's activity. "If you put animals in an enriched environment and give them access to running wheels, you increase survival of new brain cells," says Gage. "Now we show that stimulation may, in part, be mediated through the NMDA receptor."

Those studies had also shown that young and middle-aged "exercised" rats perform better on learning tasks such as maze swimming, indicating that new neurons are more than just a backup supply but actually enhance learning.

"Remarkably, new neurons are born in the hippocampus, a structure whose function is to acquire new information," says Gage. "That suggests that new cells are involved in how we learn."

This ongoing struggle for connections between young and mature neurons is apparently more than just a spectacle designed to keep Mother Nature amused: the fact that enhanced learning is correlated with adult neurogenesis suggests constant rearrangements within neural networks are absolutely necessary for learning to occur.

In fact, data emerging from studies in the Gage lab reinforces the commonly held belief that using one's brain cells is the best way to optimize brain function throughout one's lifetime.

"In the natural course of aging there is cognitive decline," says Gage. "We know we lose the ability to generate new neurons with age. We are currently trying to figure out how to generate as many neurons as possible to potentially enhance learning or increase the amount of neurogenesis in adults."



Publication: Nature Journal
On the web: www.salk.edu 

Advertise in this space for $10 per month. Contact us today.


Related Neurosciences News
A new tool for brain research
Eve Marder to receive the $500,000 Gruber Neuroscience Prize
Research teams find genetic variant that could improve warfarin dosing in African-Americans
Diagnostic coronary angiography: Functional flow reserve changes decisions in 25 percent of cases
Study identifies a genetic risk factor for persistent pain
New BRAIN initiative announced at White House
Nurses can play key role in reducing deaths from world's most common diseases
UH Case Medical Center awarded highest certification as Comprehensive Stroke Center
NIH funds research to identify Parkinson's biomarkers
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

Subscribe to Neurosciences Newsletter

Enter your email address:


 Additional information about the news article
Also contributing to this study were Gage lab postdoctoral fellows Vladislav Sandler, Ph.D., Nicolas Toni, Ph.D., and Chunmei Zhao, Ph.D. Tashiro now does research at the Norwegian University of Science and Technology in Trondheim.

The Salk Institute for Biological Studies in La Jolla, California is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)