RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Neurosciences Channel

subscribe to Neurosciences newsletter
Latest Research : Neurosciences

   EMAIL   |   PRINT
Miniature MRI technique to study brain anatomy in invertebrates

Dec 16, 2004 - 3:48:00 PM

 
[RxPG] Scientists with the Center for Behavioral Neuroscience, a research consortium based at Georgia State University, have for the first time used a form of magnetic resonance imaging to reveal anatomical features of the nervous system in a live crayfish, a crustacean whose brain measures only 3 millimeters wide.

The technique, which is reported and highlighted in an accompanying commentary in the Dec. 15 issue of The Journal of Experimental Biology, provides a powerful new tool for understanding the neurobiology of behavior in invertebrate animal models.

Conventional MRI technology employs high-intensity magnetic fields to excite protons in the water molecules of soft tissue. Scanners detect the excitation and image cross-sectional slices of an organ, such as the brain. To image a live crayfish, whose physiology does not normally respond to magnetic fields, CBN researchers injected manganese, a contrast-enhancing agent that crayfish cells absorb, through a long tube into its circulatory system. The infusion took place while the animal was positioned inside the MRI scanner.

"Before injecting the manganese, we couldn't see the animal's brain at all," said Georgia State research scientist Jens Herberholz, the study's lead author. "But shortly after injecting it, we suddenly saw the brain light up like a Christmas tree and could easily discern its substructures."

Herberholz and his colleagues, including Georgia State professor Donald Edwards, Georgia State lab technician Christopher Mims, and Emory University's Xiaodong Zhang and Xiaoping Hu, developed manganese-enhanced MRI to study the crayfish brain. They discovered the technique also is effective in imaging other parts of the animal's body. In their pilot study, the scientists imaged a number of complex anatomical structures in the foregut that had never been seen in a live crayfish.

Crayfish serve as one of the best animal models for studying the neural bases of aggression and social hierarchies. During an initial encounter, two crayfish fight one another to establish dominant and subordinate roles. This interaction alters the physiology of each animal's brain at the cellular level.

Before manganese-enhanced MRI, researchers relied on dissections and electrophysiology to measure the neural changes associated with social behavior in crayfish. With the new technology, which is not harmful to crayfish, Herberholz said the same animal could be imaged repeatedly, enabling scientists to capture changes as they occur.

"This technique can be used to study invertebrate anatomy, but manganese also is a marker for neural activity," said Herberholz. "There are a wealth of potential applications for research on invertebrates, which serve as important model systems for understanding how neural circuitry produces behavior in all animals, including humans."



Publication: The Journal of Experimental Biology

Advertise in this space for $10 per month. Contact us today.


Related Neurosciences News
A new tool for brain research
Eve Marder to receive the $500,000 Gruber Neuroscience Prize
Research teams find genetic variant that could improve warfarin dosing in African-Americans
Diagnostic coronary angiography: Functional flow reserve changes decisions in 25 percent of cases
Study identifies a genetic risk factor for persistent pain
New BRAIN initiative announced at White House
Nurses can play key role in reducing deaths from world's most common diseases
UH Case Medical Center awarded highest certification as Comprehensive Stroke Center
NIH funds research to identify Parkinson's biomarkers
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

Subscribe to Neurosciences Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)