RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Neurosciences Channel

subscribe to Neurosciences newsletter
Latest Research : Neurosciences

   EMAIL   |   PRINT
Researchers identified the brain region that controls hoarding behavior

Dec 16, 2004 - 4:03:00 PM

 
[RxPG] Most people have a collection of some kind at some point in their lives. Indeed, historical studies show that acquiring and retaining objects, even when they are not necessary for survival, is not only nearly universal, but also has been part of human behavior since the earliest human societies. Yet despite the ubiquitous nature of this trait, very little is known about what drives humans to collect.

By studying patients who developed abnormal hoarding behavior following brain injury, neurology researchers in the University of Iowa Roy J. and Lucille A Carver College of Medicine have identified an area in the prefrontal cortex that appears to control collecting behavior. The findings suggest that damage to the right mesial prefrontal cortex causes abnormal hoarding behavior by releasing the primitive hoarding urge from its normal restraints. The study was published online in the Nov. 17 Advance Access issue of the journal Brain.

Hoarding behavior is common among animals; around 70 species hoard and mostly they hoard food, which makes sense from a survival standpoint. Studies of hoarding behavior in rodents have shown that collecting is driven by certain primitive structures deep in the brain and most mammals, including humans, share these subcortical regions.

"But human collecting goes beyond items that are solely useful for survival," said Steven Anderson, Ph.D., UI associate professor of neurology and lead author of the study. "People often collect art or stamps or pretty much anything. Clearly there is some higher structure in humans that modulates the collecting drive and that's what we think we have tapped into."

The UI team studied 86 people with focal brain lesions - very specific areas of brain damage – to see if damage to particular brain regions could account for abnormal collecting behavior. Other than the lesions, the patients' brains functioned normally and these patients performed normally on tests of intelligence, reasoning and memory.

A questionnaire completed by a close family member was used to identify problematic collecting and the behavior was classified as abnormal if the collection was extensive; the collected items were not "useful" or aesthetic; the collecting behavior began only after the brain injury occurred; and the patient was resistant to discarding the collected items.

The questionnaire very clearly split the patients into two groups – 13 patients who had abnormal collecting behavior and a majority (73 patients) who did not. Unlike normal collecting behavior such as stamp collecting, the abnormal collecting behavior of these patients significantly interfered with their normal daily life. Patients with abnormal collecting behavior filled their homes with vast quantities of useless items including junk mail and broken appliances. Despite showing no further interest in the collected items, patients resist attempts to discard the collection.

To determine if certain areas of damage were common to patients who had abnormal collecting behavior, the UI researchers used high-resolution, three-dimensional magnetic resonance imaging to map the lesions in each patient's brain and overlapped all the lesions onto a common reference brain.

"A pretty clear finding jumped out at us: damage to a part of the frontal lobes of the cortex, particularly on the right side, was shared by the individuals with abnormal behavior," Anderson said. "Our study shows that when this particular part of the prefrontal cortex is injured, the very primitive collecting urge loses its guidance.

"This finding sheds some light on a ubiquitous, nearly universal human behavior that we really don't know much about, and we can use this as springboard to think about normal collecting behavior."

Anderson added that the findings also may have implications for understanding certain neurological conditions such as obsessive-compulsive disorder (OCD) where abnormal collecting behavior occurs but the patient has no readily detectable brain defect.

"Patients with OCD and some other disorders such as schizophrenia, Tourette's syndrome and certain dementias, can have similar pathological collecting behavior but we don't have a pointer to locate where in the brain the problem is occurring," Anderson said. "Our hope is that our findings with these brain lesion studies will lead to insights in these conditions as well."

Anderson's co-authors on the study were Antonio Damasio, M.D., Ph.D., the Maurice Van Allen Professor of Neurology and head of the department, and Hanna Damasio, M.D., UI Foundation Distinguished Professor in the Department of Neurology. The study was funded in part by a grant from the National Institute of Neurological Disorders and Stroke.



Publication: Nov. 17 Advance Access issue of the journal Brain
On the web: Visit UI Health Care online 

Advertise in this space for $10 per month. Contact us today.


Related Neurosciences News
A new tool for brain research
Eve Marder to receive the $500,000 Gruber Neuroscience Prize
Research teams find genetic variant that could improve warfarin dosing in African-Americans
Diagnostic coronary angiography: Functional flow reserve changes decisions in 25 percent of cases
Study identifies a genetic risk factor for persistent pain
New BRAIN initiative announced at White House
Nurses can play key role in reducing deaths from world's most common diseases
UH Case Medical Center awarded highest certification as Comprehensive Stroke Center
NIH funds research to identify Parkinson's biomarkers
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

Subscribe to Neurosciences Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)