RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Neurosciences Channel

subscribe to Neurosciences newsletter
Latest Research : Neurosciences

   EMAIL   |   PRINT
Signals That Tell Fly Neurons to Extend or Retract

Oct 11, 2006 - 4:36:00 AM , Reviewed by: Priya Saxena
The researchers propose that Wnt signaling in DCNs allows axons to maintain their connection to the medulla. Extension or retraction of DCN axons might therefore reflect a different balance of the antagonistic effects of FGF/Rac1 and Wnt/JNK signaling.

 
[RxPG] During metamorphosis, fruit fly larvae shed the maggot sheath that had confined their life to a tedious creepy-crawl and don legs, wings, and a pair of big, buggy eyes to explore the third dimension and broaden their horizons. A less conspicuous, but just as wondrous transformation also takes place in their brains. There, new neurons are born and new neural networks are established, which the insects will use to make sense of the environment sampled by their shiny new limbs. How neurons select the appropriate partners among myriad candidates is a long-standing question in neurobiology. And what powers the growth of their axons, the long extensions with which they probe the brain until they reach the right target, is also mostly unknown. Mohammed Srahna, Bassem Hassan, and their colleagues have tackled these issues by genetically manipulating a small cluster of neurons whose axons carve their way through the optic lobe of the fly brain during metamorphosis.

The neurons, known as dorsal cluster neurons (DCNs), lie in clusters of approximately 40 near the top of each brain hemisphere. At the end of larval life, they start extending a long axonal branch across the brain, all the way to the opposite optic lobe (contralateral branch). Using a gene construct specifically expressed in the DCN (ato-Gal4-14a), the researchers marked the neurons with a fluorescent protein to follow their axons’ trajectories. A third of the way through metamorphosis, most contralateral branches (30–40) had passed the lobula and reached the medulla, two neighboring brain areas that integrate neuronal inputs coming from the retina. By the adult stage, however, only a dozen contralateral branches remain connected to the medulla. The researchers suspected that the other branches degenerated in the late phases of metamorphosis. Indeed, they observed shortened DCN axons between lobula and medulla in flies mid-way through metamorphosis. But they found no evidence of axon breakdown, such as swelling or fragmentation. They concluded that most DCN axons retracted back to the lobula after reaching the medulla.
Signals That Tell Fly Neurons to Extend or Retract
The dorsal cluster neurons (magenta) and their neurites (green) forming a commissure (a bridgeway) across the adult fly brain and branching bilaterally over the fly visual centers. (Image: Lee Fradkin, Jasprien Noordermeer, and Bassem Hassan)

To probe the mechanics of DCN axon growth and retraction, the researchers blocked specific signaling pathways in the DCN by driving the expression of various gene constructs with ato-Gal4-14a. Blocking the intracellular signaling protein JNK or a receptor (Fz2) for the extracellular signal Wnt prevented the extension of DCN axons beyond the lobula. Blocking another intracellular signaling protein called Rac1 or the receptor for the extracellular signal FGF caused more DCN axons than normal to innervate the medulla. By simultaneously manipulating several pathways, the researchers determined how the pathways interact to regulate DCN axon growth. For instance, blocking JNK suppressed the excessive medulla innervation caused by blocking Rac1. This observation suggests that JNK is necessary for DCN axons to reach the medulla and that Rac1 normally impairs the activity of JNK.

Based on additional genetic and biochemical analyses, the researchers propose that JNK signaling is the engine that drives the growth of the DCN axons all the way to the medulla. In the medulla, the axons encounter a localized pool of FGF, which causes some of them to retract back to the lobula. FGF signaling acts by facilitating the inhibition of JNK by Rac1 within the DCN. In contrast, Wnt signaling boosts the activity of JNK by blunting the inhibitory effect of Rac1. The researchers propose that Wnt signaling in DCNs allows axons to maintain their connection to the medulla. Extension or retraction of DCN axons might therefore reflect a different balance of the antagonistic effects of FGF/Rac1 and Wnt/JNK signaling. Single-cell mutations suggest that the integration of these signals is happening in each of the 40 DCNs independently, meaning that the global pattern arises as a result of the autonomous action of individual cells. What remains now to be understood is what makes the 12 or so DCNs that stay connected to the medulla strike that balance differently from their 28 counterparts.



Publication: Chanut F (2006) Signals That Tell Fly Neurons to Extend or Retract. PLoS Biol 4(11): e391
On the web: Read Research Article at PLoS Biology: a peer-reviewed, open-access journal from the PUBLIC LIBRARY of SCIENCE 

Advertise in this space for $10 per month. Contact us today.


Related Neurosciences News
A new tool for brain research
Eve Marder to receive the $500,000 Gruber Neuroscience Prize
Research teams find genetic variant that could improve warfarin dosing in African-Americans
Diagnostic coronary angiography: Functional flow reserve changes decisions in 25 percent of cases
Study identifies a genetic risk factor for persistent pain
New BRAIN initiative announced at White House
Nurses can play key role in reducing deaths from world's most common diseases
UH Case Medical Center awarded highest certification as Comprehensive Stroke Center
NIH funds research to identify Parkinson's biomarkers
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

Subscribe to Neurosciences Newsletter

Enter your email address:


 Additional information about the news article
Written by Françoise Chanut

Published: October 10, 2006

DOI: 10.1371/journal.pbio.0040391

Copyright: © 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)