RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Neurosciences Channel

subscribe to Neurosciences newsletter
Latest Research : Neurosciences

   EMAIL   |   PRINT
Step closer to Hereditary Ataxia cure

May 29, 2005 - 4:00:00 PM
"Though we don't think we can reverse the disease by putting the Aprataxin gene back in, we think we might be able to improve the functions of target proteins once we understand their roles and the consequences of their regulation by Aprataxin. In this way, the enzymatic activity of Aprataxin takes us to Aprataxin target proteins and potential therapeutic strategies," said Brenner, also senior editor of the book "Oncogenomics: Molecular Approaches to Cancer."

 
[RxPG] Opening a window to understand the molecular basis of a hereditary ataxia, Dartmouth Medical School researchers have identified an enzyme activity that is inactivated in all reported mutant forms of a disease protein. The discovery may lead to therapies to treat the neurological disease. The study appears in the June 3, 2005 issue of the Journal of Biological Chemistry (JBC) as Paper of the Week, an honor conferred on approximately 1% of JBC's 6600 annual publications.



Dr. Charles BrennerMutations in the gene encoding Aprataxin are the second leading cause of an early onset hereditary ataxia termed ataxia-oculomotor apraxia 1. Early onset ataxias are progressive, neurological disorders, with the patients losing balance and motor coordination in their hands and legs, and suffering from other symptoms such as controlling ocular movements.

"As with many diseases for which genes were identified by positional cloning, one begins with insufficient information about the encoded protein that would allow one to formulate a disease hypothesis, let alone develop potential therapeutic strategies," said lead author Dr. Charles Brenner, associate professor of genetics and of biochemistry at Dartmouth Medical School. "By identifying an enzymatic activity of Aprataxin, we were able to formulate the disease hypothesis that Aprataxin activity on protein substrates in the developing brain is required for normal neurological development."

By establishing that Aprataxin has an enzymatic activity, Brenner said, researchers can focus attention on potential Aprataxin target proteins that might be regulated by this gene. "Though we don't think we can reverse the disease by putting the Aprataxin gene back in, we think we might be able to improve the functions of target proteins once we understand their roles and the consequences of their regulation by Aprataxin. In this way, the enzymatic activity of Aprataxin takes us to Aprataxin target proteins and potential therapeutic strategies," said Brenner, also senior editor of the book "Oncogenomics: Molecular Approaches to Cancer."



Working with Drs. Heather F. Seidle and Pawel Bieganowski, two post-doctoral fellows at Dartmouth's Norris Cotton Cancer Center, Brenner recognized Aprataxin as having a protein domain related to "Hint," an enzyme they previously characterized. A large number of proteins function by modifying the structures of other proteins. Hint is an AMP-lysine hydrolase, meaning that it has the ability to remove a nucleotide modification, typically AMP, from a lysine sidechain. In earlier work with Dennis Wright, associate professor of chemistry at Dartmouth, and Konrad Howitz of Biomol, Inc., Brenner and co-workers developed a synthetic chemical substrate that allowed Hint to produce a strong fluorescent signal when it did its job (AMP-lysine hydrolysis) on a model compound.

In this study, the researchers purified human Aprataxin and every disease-associated mutant form of Aprataxin and measured the ability of these proteins to function as AMP-lysine hydrolases. Though the model substrate may not have all of the features Aprataxin is looking for in a substrate inside the cell, the authors showed that wild-type Aprataxin possessed AMP-lysine hydrolase activity that depends on its Hint active site and that all disease-associated mutant forms of Aprataxin reduced or eliminated this activity. The next step, according to Dr. Seidle, is to identify the protein targets in vivo.




Publication: Dartmouth-Hitchcock Medical Center
On the web:  

Advertise in this space for $10 per month. Contact us today.


Related Neurosciences News
A new tool for brain research
Eve Marder to receive the $500,000 Gruber Neuroscience Prize
Research teams find genetic variant that could improve warfarin dosing in African-Americans
Diagnostic coronary angiography: Functional flow reserve changes decisions in 25 percent of cases
Study identifies a genetic risk factor for persistent pain
New BRAIN initiative announced at White House
Nurses can play key role in reducing deaths from world's most common diseases
UH Case Medical Center awarded highest certification as Comprehensive Stroke Center
NIH funds research to identify Parkinson's biomarkers
Treatment with clot-busting drug yields better results after stroke than supportive therapy alone

Subscribe to Neurosciences Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)